Contents

1. Introduction .. 1
 Welcome .. 1
 Specifications 1
 Contact Information 1
 Warranty Information 1
 Seller’s Liability 2

2. The Infiltrometer 3
 How it Works 3
 Features .. 4
 Hydraulic Conductivity 5

3. Preparation .. 7
 Choosing the Suction Rate 10
 Placement .. 10

4. Collecting Data 12
 Use the Spreadsheet Macro 13
 Calculate Infiltration 14

5. Water Repellency Index 18

6. Maintenance 20
 Cleaning ... 20
 Suction Tube 20

Minidisk Infiltrometer
Table of Contents
7. References and Reading21
 Additional Reading22
1. Introduction

Welcome
Welcome to the mini disk infiltrometer for measuring soil hydraulic conductivity. The infiltrometer will enable you to measure the hydraulic conductivity of any soil accurately and affordably.

Specifications
Total Length - 32.7 cm
Diameter of tube- 3.1 cm
Sintered stainless steel disc: 4.5cm dia., 3 mm thick
Length of suction regulation tube: 10.2 cm
Suction range: 0.5 to 7 cm of suction
Length of water reservoir: 21.2 cm
Length of Mariotte tube: 28 cm
Volume of water required to operate: 135 ml

Contact Information
To contact Decagon for customer support or questions:
• E-mail us at support@decagon.com
• Fax us at: (509) 332-5158
• Call us at: 1-800-755-2751 (US and Canada only) or 509-332-2756.

Warranty Information
The infiltrometer has a 30-day satisfaction guarantee and a one-year warranty.
Minidisk Infiltrometer
1. Introduction

Seller’s Liability
Seller warrants new equipment of its own manufacture against defective workmanship and materials for a period of one year from date of receipt of equipment (the results of ordinary wear and tear, neglect, misuse, accident and excessive deterioration due to corrosion from any cause are not to be considered a defect); but Seller’s liability for defective parts shall in no event exceed the furnishing of replacement parts F.O.B. the factory where originally manufactured. Material and equipment covered hereby which is not manufactured by Seller shall be covered only by the warranty of its manufacturer. Seller shall not be liable to Buyer for loss, damage or injuries to persons (including death), or to property or things of whatsoever kind (including, but not without limitation, loss of anticipated profits), occasioned by or arising out of the installation, operation, use, misuse, non-use, repair, or replacement of said material and equipment, or out of the use of any method or process for which the same may be employed. The use of this equipment constitutes Buyer’s acceptance of the terms set forth in this warranty. There are no understandings, representations, or warranties of any kind, express, implied, statutory or otherwise (including, but without limitation, the implied warranties of merchantability and fitness for a particular purpose), not expressly set forth herein.
2. The Infiltrometer

The mini disk infiltrometer is ideal for field measurements; due to its compact size, the water needed to operate it can easily be carried in a personal water bottle. It is also practical for lab and classroom use, in demonstrating basic concepts of soil hydraulic conductivity.

How it Works

The upper and lower chambers of the infiltrometer are both filled with water. The top chamber (or bubble chamber) controls the suction. The lower chamber contains a volume of water that infiltrates into the soil at a rate determined by the suction selected in the bubble chamber. The lower chamber is labeled like a graduated cylinder, with volume shown in mL. The bottom of the infiltrometer has a porous sintered stainless steel disk which will not allow water to leak in open air. The small diameter of the disk allows for undisturbed measurements on relatively level soil surfaces.

Once you place the infiltrometer on a soil, water begins to leave the lower chamber and infiltrate into the soil at a rate determined by the hydraulic properties of the soil. As the water level drops, you record the volume at specific time intervals (like every 30 seconds for a silt loam soil). You can then plot this data using a spreadsheet (included on CD-ROM with the infiltrometer) to calculate the hydraulic conductivity.
Minidisk Infiltrometer

2. The Infiltrometer

Features

Fig. 1: Infiltrometer diagram
Hydraulic Conductivity

The knowledge of Hydraulic conductivity benefits scientists, land managers, and growers, by indicating how quickly water will infiltrate when applied to a given field or soil type. Infiltration is also relevant in contaminant transport, ground water recharge and ecosystem sustainability. The hydraulic conductivity of the soil is the rate at which water can move through the soil under certain conditions and hydraulic gradients. Water movement through soil typically happens under saturated and unsaturated conditions. Because the mini disk infiltrometer is a tension infiltrometer, it measures the unsaturated hydraulic conductivity of the medium it is placed on at different applied tensions. Flow through an unsaturated soil is more complicated than flow through continuously saturated pore spaces. Macropores are filled with air, leaving only finer pores to accommodate water movement. Therefore, the hydraulic conductivity of the soil is strongly dependent on the detailed pore geometry, water content, and differences in matric potential (Rose, 1966; Brady and Weil, 1999).

The mini disk infiltrometer measures the hydraulic conductivity of the medium it is placed upon. Because the infiltrometer has an adjustable suction (0.5 to 7 cm) you can get additional information about the soil by eliminating macropores with an air entry value smaller than the suction of the infiltrometer. This is done by controlling the infiltration with a small negative pressure or suction. When the water is under tension or suction, it will not enter macropores such as cracks or wormholes, but will only move into and through the soil as determined by the hydraulic forces in the soil.
Minidisk Infiltrometer

2. The Infiltrometer

Saturated conductivity is obtained when all the pores, including the large ones (such as cracks or wormholes), are filled. Macropore flow, however, is extremely variable from place to place, and therefore difficult to quantify. Infiltrating water under a tension prevents the filling of the macropores and gives a hydraulic conductivity characteristic of the soil matrix, and is less spatially variable.

Soil hydraulic conductivity is a function of water potential and water content of the soil. The decrease in conductivity as the soil dries is due primarily to the movement of air into the soil to replace the water. As the air moves in, the pathways for water flow between soil particles becomes smaller and more tortuous, and flow becomes more difficult.
3. Preparation

To prepare the infiltrometer for measurement, do the following:

1. Fill the bubble chamber three quarters full by running water down the suction control tube or removing the upper stopper as shown.

NOTE: Do not use distilled water. Soil water has solutes and clays have salts on the exchange sites. Using distilled water changes the ionic balance and may flocculate or disperse the clay in the soil.

![Fig. 2: Filling the upper chamber](image)
Minidisk Infiltrometer
3. Preparation

2. Once the upper chamber is full, slide the suction control tube all the way down, invert the infiltrometer, remove the bottom elastomer with the porous disk, and fill the water reservoir.

Fig. 3: Removing the bottom elastomer

3. The position of the end of the mariotte tube with respect to the porous disk is carefully set to ensure a zero suction offset while the tube bubbles. If this dimension is changed accidentally, the end of the mariotte
tube should be reset to 6mm from the end of the plastic water reservoir tube.

4. Replace the bottom elastomer, making sure the porous disk is firmly in place.

5. If the infiltrometer is held vertically, no water should leak out.

Fig. 4: Upper chamber and suction tube
Choosing the Suction Rate

Since different soil types will infiltrate water at different rates, measuring the change of volume vs. time can often be difficult, particularly in a sandy soil where the water will infiltrate rapidly. Therefore, you can adjust the suction rate to better accommodate measuring infiltration for the type of soil you are measuring. **For most soils, a suction rate of 2cm should be adequate.** In particularly sandy soils where infiltration will occur very quickly, an adjustment to 6cm may be helpful, and for more compact soil where infiltration is much slower, a suction rate of 0.5 is recommended. However, we generally recommend that adjusting the suction to rates other than 2cm should be reserved to more advanced users who are comfortable with the instrument and theory of operation.

To adjust the suction rate, move the suction tube up or down so the water level is even with the desired suction rate marked on the side of the tube. If the suction tube is difficult to move, apply a small amount of vacuum grease on the tube to ease movement.

Placement

The infiltrometer should be applied to a smooth spot on the soil surface. If the surface is not smooth, a thin layer of fine silica sand or diatomaceous earth can be applied to the area directly underneath the infiltrometer's stainless steel disk. This will ensure good contact between the soil and the infiltrometer. When possible, we also recommend using a ring stand and clamp to hold the infiltrometer in place.
3. Preparation
4. Collecting Data

To make the hydraulic conductivity measurement, make sure you have first prepared the instrument as described in the previous chapter. Then do the following:

1. Record the starting water volume.

2. At time zero, place the infiltrometer on the surface, assuring that it makes solid contact with the soil surface.

3. Record volume at regular time intervals as the water infiltrates. The time interval you choose is based on both the suction rate you select and the soil type being measured. For example, a sand will typically be 2-5 seconds between readings, a silt loam every 30 seconds, and a tight clay 30 to 60 minutes. A typical data set will look like the first and third columns of Table 1.

4. For the calculation of hydraulic conductivity to be accurate at least 15-20 mL of water needs to be infiltrated into the soil during each measurement.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>sqrt (t)</th>
<th>Volume (mL)</th>
<th>Infiltration (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00</td>
<td>95</td>
<td>0.00</td>
</tr>
<tr>
<td>30</td>
<td>5.48</td>
<td>89</td>
<td>0.39</td>
</tr>
<tr>
<td>60</td>
<td>7.75</td>
<td>86</td>
<td>0.58</td>
</tr>
</tbody>
</table>
Use the Spreadsheet Macro

Decagon has created a basic Microsoft Excel® spreadsheet to help calculate the slope of the curve of the cumulative infiltration vs. the square root of time based on the data gathered in the above steps. The spreadsheet may be downloaded at http://www.decagon.com/downloads. To use this spreadsheet, first make sure that your PC has Microsoft Excel installed. Then do the following:

1. Open the file. You will see a table similar to the one above.

2. Input the volume levels you recorded into the corresponding volume column, and correlated with the time column on the left. You may need to extend the columns depending on how much data you have.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>sqrt (t)</th>
<th>Volume (mL)</th>
<th>Infiltration (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>9.49</td>
<td>83</td>
<td>0.77</td>
</tr>
<tr>
<td>120</td>
<td>10.95</td>
<td>80</td>
<td>0.97</td>
</tr>
<tr>
<td>150</td>
<td>12.25</td>
<td>77</td>
<td>1.16</td>
</tr>
<tr>
<td>180</td>
<td>13.42</td>
<td>75</td>
<td>1.29</td>
</tr>
<tr>
<td>210</td>
<td>14.49</td>
<td>73</td>
<td>1.42</td>
</tr>
<tr>
<td>240</td>
<td>15.49</td>
<td>71</td>
<td>1.55</td>
</tr>
<tr>
<td>270</td>
<td>16.43</td>
<td>69</td>
<td>1.68</td>
</tr>
<tr>
<td>300</td>
<td>17.32</td>
<td>67</td>
<td>1.81</td>
</tr>
</tbody>
</table>
Minidisk Infiltrometer

4. Collecting Data

recorded. The square root of time column and infiltration column will change automatically based on your data, and the graph on the right of the table will update to reflect the changes.

3. Save the data as a new spreadsheet on your hard drive.

Calculate Infiltration

A number of methods are available for determining soil hydraulic conductivity from these data. The method proposed by Zhang (1997) is quite simple, and works well for measurements of infiltration into dry soil. The method requires measuring cumulative infiltration vs. time and fitting the results with the function

\[I = C_1 t + C_2 \sqrt{t} \] \hspace{1cm} (1)

where \(C_1 \) (m s\(^{-1}\)) and \(C_2 \) (m s\(^{-1/2}\)) are parameters. \(C_1 \) is related to hydraulic conductivity, and \(C_2 \) is the soil sorptivity. The hydraulic conductivity of the soil \((k)\) is then computed from

\[k = \frac{C_1}{A} \] \hspace{1cm} (2)

where \(C_1 \) is the slope of the curve of the cumulative infiltration vs. the square root of time, and \(A \) is a value relating the van Genuchten parameters for a given soil type to the suction rate and radius of the infiltrometer disk. \(A \) is computed from:

\[A = \frac{11.65(n^{0.1} - 1) \exp\left[2.92(n - 1.9)\alpha h_a\right]}{(\alpha r_o)^{0.91}} \hspace{1cm} n \geq 1.9 \] \hspace{1cm} \text{(3a)}

\[A = \frac{11.65(n^{0.1} - 1) \exp\left[7.5(n - 1.9)\alpha h_a\right]}{(\alpha r_o)^{0.91}} \hspace{1cm} n < 1.9 \] \hspace{1cm} \text{(3b)}
where n and α are the van Genuchten parameters for the soil, r_o is the disk radius, and h_o is the suction at the disk surface. The mini disk infiltrometer infiltrates water at a suction of -0.5 to -6 cm and has a radius of 2.25 cm. The van Genuchten parameters for the 12 texture classes were obtained from Carsel and Parrish (1988). Values of A computed for the mini disk infiltrometer are given in Table 2.

Table 2: van Genuchten parameters for 12 soil texture classes and A values for a 2.25 cm disk radius and suction values from 0.5 to 6 cm.

<table>
<thead>
<tr>
<th>Texture</th>
<th>α</th>
<th>h_o</th>
<th>-0.5</th>
<th>-1</th>
<th>-2</th>
<th>-3</th>
<th>-4</th>
<th>-5</th>
<th>-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>sand</td>
<td>0.145</td>
<td></td>
<td>2.68</td>
<td>2.84</td>
<td>2.40</td>
<td>1.73</td>
<td>1.24</td>
<td>0.89</td>
<td>0.64</td>
</tr>
<tr>
<td>loamy sand</td>
<td>0.124</td>
<td></td>
<td>2.28</td>
<td>2.99</td>
<td>2.79</td>
<td>2.43</td>
<td>2.12</td>
<td>1.84</td>
<td>1.61</td>
</tr>
<tr>
<td>sandy loam</td>
<td>0.075</td>
<td></td>
<td>1.89</td>
<td>3.88</td>
<td>3.89</td>
<td>3.91</td>
<td>3.93</td>
<td>3.95</td>
<td>3.98</td>
</tr>
<tr>
<td>loam</td>
<td>0.036</td>
<td></td>
<td>1.56</td>
<td>5.46</td>
<td>5.72</td>
<td>6.27</td>
<td>6.87</td>
<td>7.53</td>
<td>8.25</td>
</tr>
<tr>
<td>silt</td>
<td>0.016</td>
<td></td>
<td>1.37</td>
<td>7.92</td>
<td>8.18</td>
<td>8.71</td>
<td>9.29</td>
<td>9.90</td>
<td>10.55</td>
</tr>
<tr>
<td>silt loam</td>
<td>0.020</td>
<td></td>
<td>1.41</td>
<td>7.10</td>
<td>7.37</td>
<td>7.93</td>
<td>8.53</td>
<td>9.19</td>
<td>9.89</td>
</tr>
<tr>
<td>sandy clay loam</td>
<td>0.059</td>
<td></td>
<td>1.48</td>
<td>3.21</td>
<td>3.52</td>
<td>4.24</td>
<td>5.11</td>
<td>6.15</td>
<td>7.41</td>
</tr>
<tr>
<td>clay loam</td>
<td>0.019</td>
<td></td>
<td>1.31</td>
<td>5.86</td>
<td>6.11</td>
<td>6.64</td>
<td>7.23</td>
<td>7.86</td>
<td>8.55</td>
</tr>
<tr>
<td>silty clay loam</td>
<td>0.010</td>
<td></td>
<td>1.23</td>
<td>7.89</td>
<td>8.09</td>
<td>8.51</td>
<td>8.95</td>
<td>9.41</td>
<td>9.90</td>
</tr>
<tr>
<td>sandy clay</td>
<td>0.027</td>
<td></td>
<td>1.23</td>
<td>3.34</td>
<td>3.57</td>
<td>4.09</td>
<td>4.68</td>
<td>5.36</td>
<td>6.14</td>
</tr>
<tr>
<td>silty clay</td>
<td>0.005</td>
<td></td>
<td>1.09</td>
<td>6.08</td>
<td>6.17</td>
<td>6.36</td>
<td>6.56</td>
<td>6.76</td>
<td>6.97</td>
</tr>
<tr>
<td>clay</td>
<td>0.008</td>
<td></td>
<td>1.09</td>
<td>4.00</td>
<td>4.10</td>
<td>4.30</td>
<td>4.51</td>
<td>4.74</td>
<td>4.98</td>
</tr>
</tbody>
</table>

15
A quadratic equation is included in the Excel spreadsheet. Columns 2 and 4 from the table are used to produce an XY (scatter) plot to the right of the table. This is used to calculate C_f, which is the slope of this line, denoted as “y.” An example is shown in the graph below:

In this example, the value of C_f is 0.0028 cm s$^{-1}$. The soil is a silt loam, so from Table 2, for 2 cm suction, $A = 7.93$. The hydraulic conductivity (at 2 cm suction) is therefore:

$$k = \frac{0.0028 \text{ cm s}^{-1}}{7.93} = 3.53 \times 10^{-4} \text{ cm/s}$$

Occasionally infiltrometer data will give a negative C_f value. Negative hydraulic conductivity is a physical impossibility, so such valves indicate a problem with the data set. Usually such data come from shallow flow restricting layers or jiggling the infiltrometer during the measurement.

A much more extensive discussion of tension infiltrometer measurement and analysis is given in Dane and Topp (2002) p. 888-896.
If you are measuring hydraulic conductivity on a soil with a \(n < 1.35 \), changes to the Zhang (1997) equation proposed by Dohnal et al. (2010) have improved estimates of \(K \) as compared to the previous equation.

\[
K = \frac{C_2(a r_0)^{0.6}}{11.65(a^{0.82} - 1) \exp[34.65(n - 1.19)ah_y]}
\] \tag{4}
5. Water Repellency Index

An Index of soil water repellency, R, can be determined from the sorptivities of 95% ethanol and water. To do this, make sure you have first prepared the instrument as described in Chapter 3. Please note that the water reservoir has to be filled with ethanol to make the ethanol sorptivity measurements, and with fresh or tap water to make the water sorptivity measurements. The bubble chamber is filled with fresh or tap water in both cases, and the suction rate of 2cm is selected (Chapter 3). Then do the following:

1. Record the starting ethanol volume.

2. At time zero, place the infiltrometer on the surface, ensuring that it makes solid contact with the soil surface.

3. Record volume at regular time intervals as the ethanol infiltrates. The time interval necessary for different soil types is presented in Chapter 4. Use the CDROM spreadsheet to calculate the cumulative infiltration I (cm) and square root of time t (s) based on the data gathered in the above steps. Use Microsoft Excel to estimate the slope (S_e) of the cumulative infiltration vs. square root of time relationship:

$$ I = S_e \sqrt{t} $$

where S_e (cm s$^{-1/2}$) is the sorptivity of ethanol.
4. Repeat steps 1-3 for water instead of ethanol, making sure to place the infiltrometer far enough away from the wetting zone of the previous measurement. The time intervals used for the water infiltration should be the same as for the ethanol infiltration. Again, use the linear approximation to estimate the slope \(S_w \) of the cumulative infiltration vs. the square root of the time relationship.

\[
I = S_w \sqrt{t}
\]

where \(S_w \) (cm s\(^{-1/2}\)) is the sorptivity of water.

5. The repellency index \(R \) is computed from \(R = 1.95 \frac{S_e}{S_w} \). It should be mentioned that ethanol can damage the numbering on the water/ethanol reservoir so care must be taken to avoid spillage.

NOTE: The infiltrometer with poly carbonate water reservoir only (product after...2005) should be filled with ethanol.
6. Maintenance

Cleaning
All of the infiltrometer parts can be cleaned using mild soap and water. The stainless steel disk can be cleaned with a brush or even run in a dishwasher. Since it is stainless steel, it will not rust, cleans easily, and won’t snag or tear on rags when washing.

Suction Tube
If the suction regulation tube is difficult to move, use a small amount of vacuum grease to allow it to move more freely.
7. References and Reading

References

Minidisk Infiltrometer
7. References and Reading

Additional Reading
Index

C
Collecting data 12
 additional reading 22
 calculate infiltration 14
 references 21
 using the spreadsheet macro 13
Contact information 1

E
Email 1

F
Fax number 1

H
How the infiltrometer works 3
Hydraulic conductivity 5

I
Infiltrometer
 how to use 7
Introduction 1

M
Maintenance 20
 cleaning 20
 suction tube 20
P
Preparation 7
choosing the suction rate 10
placement 10
Probe features 4

S
Seller's liability 3
Specifications 1

T
Table of Contents i
Telephone number 1

W
Warranty 1